W00022526

Publication Title:

Load balancing cooperating cache servers by shifting forwarded request

Abstract:

Data supplied from the esp@cenet database - http://ep.espacenet.com

This Patent POF Generated by Patent Felcher{TM), a service of Patent Logistics, LLC

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00722526
GOGF 9/46, 17/30 Al . L. .

(43) International Publication Date: 20 April 2000 (20.04.00)

(21) International Application Number: PCT/GB99/03360 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,

BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,

(22) International Filing Date: 8 October 1999 (08.10.99) ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, 1L, IN, IS, JP,

KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD,
MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
(30) Priority Data: SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN,

09/169,223 9 October 1998 (09.10.98) UsS YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD,
SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG,
KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY,

(71) Applicant: INTERNATIONAL BUSINESS MACHINES DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
CORPORATION [US/US]; New Orchard Road, Armonk, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW,
NY 10504 (US). ML, MR, NE, SN, TD, TG).

(71) Applicant (for MC only): IBM UNITED KINGDOM LIMITED
[GB/GB]; P.O. Box 41, North Harbour, Portsmouth, Hamp- | Published

shire PO6 3AU (GB). With international search report.
Before the expiration of the time limit for amending the
(72) Inventors: JORDAN, Kevin, Michael; 22 Ash Road, Briarcliff claims and to be republished in the event of the receipt of
Manor, NY 10510 (US). WU, Kun-Lung; 357 Columbine amendments.

Court, Yorktown Heights, NY 10598 (US). YU, Philip,
Shi-Lung; 18 Stornowave, Chappaqua, NY 10514 (US).

(74) Agent: WALDNER, Philip; IBM United Kingdom Limited, In-
tellectual Property Law, Hursley Park, Winchester, Hamp-
shire SO21 2JN (GB).

(54) Title: LOAD BALANCING COOPERATING CACHE SERVERS

110

WAN/Intemet
__________________ ‘_, 120 115
115 Load monitor),:/130
125\\‘ e -—= toad [|REI"T—~ S
-~ 1 i i ~
1 - balancing : | : 125 N
, 251,’ logic | |t \8/ N
/ Vesoszsorszzzzzzi - \
/ \
J / M5 a0 [MO \ \
[\
! \ LAN/regional /]
I \ area nelwork ’ !
| .
P !
\ Y ¥ Y y
Cache 190 Cache % Cache |50 Cache |90
server server R server server

155

Browser) « * ¢

160

Browser

155 155 155
160 160 160

In a system including a collection of cooperating cache servers, such as proxy cache servers, a request can be forwarded to a
cooperating cache server if the requested object cannot be found locally. An overload condition is detected if for example, due to reference
skew, some objects are in high demand by all the clients and the cache servers that contain those hot objects become overloaded due to
forwarded requests. In response, the load is balanced by shifting some or all of the forwarded requests from an overloaded cache server to
a less loaded one. Both centralized and distributed load balancing environments are described.

(57) Abstract

AL
AM
AT
AU

BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
cG
CH
CI
cM
CN
CuU
Ccz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cate d'Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
nu
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Tsrael

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LY
MC
MD
MG
MK

ML
MN
MR
MwW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

40

45

WO 00/22526 PCT/GB99/03360

LOAD BALANCING COOPERATING CACHE SERVERS

Field of the Invention ~

The present invention is related to load balancing among cooperating
cache servers and in particular to load balancing based on load conditions
and a frequency that requests are forwarded from cooperating cache
servers.

Background

The growth in the usage of the World Wide Web has been increasing
exponentially. As a result, response times for accessing web objects can
become unsatisfactorily slow. One approach to improving web access time
is to employ one or more proxy cache servers between browsers and the
originating web servers. Examples of proxy cache servers include a cluster
of PC servers running Microsoft’s Windows NTqy , such as the NETFINITYqy
servers from IBM; and workstation servers running IBM’'s AIXqy operating
system, such as the IBM RS/6000qy or SP/2gy. In fact, more and more
organizations, such as Internet Service Providers (ISPs) and corporations,
are using a collection of cooperating proxy cache servers to help improve
response time as well as reduce traffic to the Internet. A collection of
cooperating cache servers have distinct advantages over a single cache
server in terms of reliability and performance. If one fails, requests can
still be serviced by other cooperating cache servers. Reguests can be
distributed among the servers, thus increasing scalability. Finally, the
aggregate cache size is much larger so that it is more likely that a

regquested object will be found in one of the cache servers.

With cooperating cache servers, a request that cannot be serviced
locally due to a cache miss can be forwarded to another cache server
storing the reguested object. As a result, there are two kinds of
requests that can come to a cache server: direct request and forwarded
requests. Direct reguest are those that are received directly from
clients. Forwarded reguests are those that come from other cooperating
cache servers on behalf of their clients due to cache misses on the cache
servers. With requests forwarded among the cache servers, a cache server
can easily become overloaded if it happens to contain in-demand (or "hot")
cbjects that most clients are currently interested in, creating uneven
workloads among the cache servers. Uneven workloads can create a
performance bottleneck, as many of the cache servers are waiting for the
same overloaded cache server to respond to requests forwarded to it.
Therefore, there is a need for a way to perform dynamic load balancing
among a collection of proxy cache servers. The present invention addresses
such a need.

10

15

20

25

30

35

40

45

WO 00/22526 PCT/GB99/03360

Load balancing is traditionally done by a front-end scheduler which
nevenly distributes" incoming direct reguests among the cache servers. For
example, load balancing can be done at the DNS level by manipulating a
mapping table, such as is done by the NETRAqy proxy cache by Sun
Microsystems ("Proxy Cache Server, Product Overview", white paper, Sun
Microsystems, http://www.sun.com/). Load balancing among a cluster of
servers can also be done with a front-end router, such as the
NETDISPATCHERmy offered by IBM (see e.g., G. Goldszmidt and G. Hunt,
nNetDispatcher: A TCP Connection Router," IBM Research Report, RC 20853,
May 1997). Here, incoming reguests are distributed by the NETDISPATCHERqy
to the least lcaded server in the cluster. However, these traditional
approaches distribute only "direct requests" and do not address a load
imbalance problem resulting from too many reqguests for hot objects being
simultaneously forwarded toc the same proxy server. The present invention

addresses such a need.

Cooperative caching, or remote caching, has been used in distributed
file systems to improve system performance (see "Cooperative caching:
Using Remote Client Memory to Improve File System Performance," by M. D.
Dahlin et al., Proc. of 1lst Symp. on Operating Systems Design and
Implementation, pp.1-14, 1994). Here, the file caches of a collection of
workstations distributed on a LAN are coordinated to form a more effective
overall file cache. Each workstation caches not only objects referenced by
local reguests but also objects that may be referenced by requests from a
remote workstation. Upon a local cache miss, a local request can be sent
to other client workstations where a copy can be cbtained, if found.
Otherwise, the object is obtained from the object server. The emphasis
here is mainly how to maintain cache coherency in the face of updates and
how to maintain cache hit ratios by moving a locally replaced object to
the cache memory of another workstation. There is no dynamic load
balancing.

Cooperative caching is also used in collective proxy cache servers
to reduce the access time. Upon a cache miss, instead of going directly to
the originating web server potentially through a WAN, a cache server may
forward the request to cobtain the object from a cooperating cache server
in a LAN or a regional area network. For example, upon a local cache miss
in the SQUID system, a cache server multicasts a request {using the
Internet Cache Protocol (ICP)) to a set of other cache servers (see
ngquid Internet Object Cache", by D. Wessels et al.,
http://squid.nlanr.net/). If their caches contain the reguested object,
these cooperating cache servers réply with a message indicating such. The
requested object is then obtained from the cooperating cache server which
responded first to the request, instead of from the original web server on

the Internet. However, if none replies after a time-out period, then the

10

15

20

25

30

35

40

45

WO 00/22526 PCT/GB99/03360

requested object will be fetched from the originating web server. Load
imbalances can occur at a cache server due to forwarded requests.
— .

Instead of multicasting, the CRISP system uses a logical central
directory to locate an object cached on another proxy server (see
nDirectory Structures for Scaleable Internet Caches", S. Gadde et al.,
Technical Report C8-1997-18, Dept. of Computer Science, Duke University,
1997). Here, upon a cache miss, a cache server asks the directory server
for the object. With central knowledge of the caches object storage, the
directory server sends such a request to the server whose cache includes
the object. If found, the object is then sent to the reguesting server
while the original server continues to cache the object. If no cache has a
copy of the reguested object, the requesting server obtains the object
from the originating web server through the Internet (potentially through
a WAN). Again, this can create a load imbalance at the cache server due to
subsequent requests forwarded to this cache server.

vet another way to locate an object on a cooperating cache server is
through a hash function. An example is the Cache Array Routing Protocol
(CARP) (see V. Valloppillil and K. W. Ross, "Cache Array Routing Protocol
v1.0," Internet Draft,
http://ircache.nlanr.net/Cache/ICP/draft-vinod-carp-vl-OB.txt, Feb. 1998).
Tn CARP, the entire object space is partitioned among the cooperating
cache servers, with one partition for each cache server. When a request
is received by a cache server from a configured client browser, a hash
function is applied to a key from the reguest, such as the URL or the
destination IP address, to identify the partition. If the hash partition
is the assigned to requesting cache server, then the request is serviced
locally. Otherwise, it 1is forwarded to the proper cache server in the
identified partition.

SQUID, CRISP and CARP use the caches of other proxy servers to
reduce the possibility of having to go through the WAN for a missed
object. They differ in the mechanism for locating a cooperating cache
server whose cache may contain a copy of the requested object. Each cache
server gservices two kinds of requests: direct requests and forwarded
requests. Direct reguests are those made directly from the browsers
connected to the proxy server. Forwarded reguests are those made by
tooperating cache servers whose caches do not have the requested objects.
In any event, depending on the types of ocbjects a proxy server caches at a
given moment, its CPU could be overloaded because it is busy serving both
direct and forwarded requests.

10

15

20

25

30

35

40

45

WO 00/22526 PCT/GB99/03360

summary of the Invention

In accordance with the aforementioned needs, one aspect of the
present invention provides a cache server load balancing method,
comprising the steps of: receiving forwarded requests from a cooperating
cache server in response to a cache miss for an object on the cooperating
cache server; and shifting one or more of said forwarded requests for the
object between cooperating cache servers based on a load condition and a

forwarding freguency for the object.

Another aspect of the present invention provides a method of locad
balancing in a collection of cooperating cache servers, where each cache
server can receive direct requests and forwarded reguests, and upon a
cache miss, a regquest can be forwarded to an owning cache server caching
said object, the method comprising the steps of: monitoring a load
condition and a forwarding freguency for said cooperating cache servers;
and shifting one or more forwarded requests from one cooperating cache

server to a second cooperating cache server based on a change in the load

condition and the forwarding frequency.

For example, in a system including a collection of cooperating proxy
cache servers, a request can be forwarded to another cooperating server if
the requested object cannot be found locally. Instead of fetching the
object from the originating web server through the Internet, a cache
server can obtain a copy from a cooperating cache server in a local area
network or an intranet. The average response time for access to an object
can be significantly improved by the cooperating cache server. However,
due to reference skew, some objects can be in high demand by all the
clients. As a result, the proxy cache servers that contain those hot
objects can become overloaded by forwarded requests coming from other
proxy cache servers, creating a performance bottleneck. According to the
present invention, we propose a load balancing method for a collection of
cooperating proxy cache servers by shifting some or all of the forwarded
requests from an overloaded cache server to a less loaded one.

an example of a cache server load balancing method in accordance
with the present invention includes the steps of: receiving forwarded
requests from a cooperating cache server in response to a cache miss for
an object on the cooperating cache server; and shifting one or more of the
forwarded requests for the object between cooperating cache servers based
on a load condition and a forwarding frequency for the object.

The present invention also includes features for periodically
monitoring the load condition on and the forwarding frequency to the

owning cache server; and proactively shifting one or more subsequent

10

15

20

25

30

35

40

45

WO 00/22526 PCT/GB99/03360

forwarded requests for the cached object from the owning cache server to
one or more of the cooperating cache servers, in response to the
monitoring. Alternatively, the shifting sﬁep further includes the step of
checking the load condition and forwarding frequency, in response to the
receipt of a forwarded request. In one example, the load condition of the
cooperating cache server is a weighted sum o¢f a count of said forwarded
requests, and a count of direct requests to said cooperating cache server.
In another example, the cache information is maintained at: each object
level; or a partition of objects level.

The present embodiment includes various implementations for
performing the load balancing, including both centralized and distributed
envircnments and various hybrids thereof. For example, a distributed load
monitor can be used for monitoring and maintaining a local load condition,
the forwarding frequency and ownership information for cached objects on
each cooperating cache server. The cooperating cache servers can
periodically exchange and maintain one or more of: the load condition
information; the forwarding freguency; and the ownership information. For
example, the cooperating cache servers can exchange information by
piggybacking one or more of: the load condition information; the
forwarding frequency; and the ownership information, with one or more of

the forwarded reqguests and responses.

In another example, an overloaded cooperating cache server can
identify a less loaded cooperating cache server; and communicate a shift
request and a copy of the cached object to the less loaded cooperating
cache server (which then caches the object), so that subsequent requests
for the object will not be forwarded. Alternatively, an overloaded
cooperating cache server can communicate the shift reguest to the less
loaded cooperating cache server, which then obtains a copy of the object
from an originating object server, in response to the shift request. In
yvet another alternative, the owning cache server can multicast the shift
regquest message to one or more of the other cooperating cache servers so
that subsequent forward requests will be shifted.

In a fully distributed implementation of the present invention, the
cooperating cache servers can each include a distributed load monitor for

monitoring and locally maintaining lcoad conditions, and also can maintain

- the forwarding frequency and ownership information in a local copy of a

caching table or by means of a hashing function. The cooperating cache
servers can modify the ownership information by means of the local copy of
the caching table or the hash function.

The present embodiment includes still other features for modifying
the ownership for the object to a shared ownership between at least two of

10

15

20

25

30

35

40

45

WO 00/22526 PCT/GB99/03360

the cooperating cache servers and forwarding subsequent object reguests to
one or more less loaded shared owners of the object. If a decrease in the
l1oad condition for a shared ocbject 1s detected, the §pared anership can
be merged, in response to the decrease in the load condition.

In yet another example, the shifting of one or more of the forwarded
requests based on the load condition an the forwarding frequency can be
accomplished by communicating a copy of the object from the owning cache
server to one or more of the cooperating cache servers, so that subsequent
requests will not be forwarded (as long as the object remains in the
recipient’s cache).

An example of a centralized environment in accordance with the
present embodiment includes: a centralized logical load monitor for
maintaining the forwarding frequency and the load condition for the
cooperating cache servers. The load monitor can include a logical
directory server for maintaining a load table for monitoring the load on
the cache servers and a caching table (or hash function) for monitoring
the forwarding freguency and locating objects. The directory server
receives requests for object locations in other cache servers for a
locally missed object and forwards requests for locally missed objects.
The directory server load balances requests among the cooperating cache
servers by manipulating the caching table based on the lcad and the
forwarding frequency for a given object, in response toO the requests for
object locations.

Brief Description of the Drawings

These and other features, aspects, and advantages of the present
invention will become better understoocd with reference to the following

description, appended claims, and accompanying drawings wherein:

Figure la shows an example of a system in a block diagram form
employing a collection of proxy cache servers, wherein a centralized load
balancing logic according to the present invention can be applied;

Figure 1b shows another example of a system in a block diagram form
employing a collection of proxy cache servers, where a distributed load
balancing logic according to the present invention can be applied;

Figures 2a-b show examples of data formats for two tables that can
be maintained by the load monitor depicted in Figures la-b;

Figure 3 shows an example of a logic flow for the load monitor in

response to a reguest from a cache server because of a cache miss; and

10

15

20

25

30

35

40

WO 00/22526 PCT/GB99/03360

Figure 4 shows an example of a logic flow for a cache server in
response to a request for an object.

Detailed Description

Examples of the load balancing logic of the present embodiment will
be described for both centralized and distributed architectures. Figure la
shows an example of a block diagram of a system emploving a collection of
proxy cache servers, where a centralized load balancing logic proposed in
this invention can be applied. As depicted, the system includes a
collection of proxy cache servers 150. Although only a single level of
cache server is depicted, there could be a hierarchy of cache servers 150.
As is conventional, these proxy cache servers are connected with each
other through a local area network (LAN) or a regional area network or
intranet 140. Each cache server 150 is also connected to a wide area
network (WAN) or the Internet 110. Through the WAN, these proxy cache
servers can reach 115 the originating web servers for objects that cannot
be found locally on their own caches.

According to the present embodiment a logical load monitor 120
includes a load balancing logic 130 for monitoring the load conditions and
forwarding freguency (Fig. 2a) of the cooperating cache servers 150 and
provides load balancing for them. As will be described below, various load
monitor 120 features can: reside in one Or more of the cache servers; be
duplicated and distributed among the cache servers: or reside in another
dedicated system such as a personal computer (PC) server or workstatiom.
In a centralized system configuration, the load monitor 120 can perform a
central directory function in directing forwarded requests 125 to the
cache servers. One Or more browsers 160 can be configured to connect to
each cache server 150. Direct requests 155 are sent from the clients such
as computers running conventional browsere 160 to the configured cache
server 150. If the requested object can be found locally, then it is
returned to the browser. Otherwise, the cache server 150 communicates a
message to the load monitor 120. Various example implementations of the
load monitor 120 will be described in more detail below. If no load
imbalance condition or trend exits, the load monitor 120 then forwards the
request 125 to the cache server 150 that owns the reguested object. The
owning cache server then sends the regquested obiject to the reguesting
cache server, e.g., via the LAN 140.

Tf an actual load imbalance is identified, or predicted based on a
loading trend, the load monitor 120 initiates a shifting of forwarded
requests from the overloaded cache server to one or more underloaded (or
less loaded) servers. As will be described in more detail below, the

10

15

20

25

30

35

40

45

WO 00/22526 PCT/GB99/03360

shifting of ownership can be based on the load condition of the servers
150 and the forwarding frequency, as well as other factors.
~ .)

Figures 2a-b shows examples of data formats of two tables maintained
by the load monitor. As depicted, the tables include a load table 102, and
a caching table 101. One skilled in the art will appreciate that a single
table, or various other data structures could alternatively or
equivalently be used. The load table 102 includes the load condition 1021
of each (A,B,C ... 1022) cache server 150 so that overloaded and
underloaded servers can be identified. As is conventional, load conditions
1021 can be updated pericdically by probing each cache server. The load of
a cache server can be a weighted sum of the number of forwarded reguests
and the number of direct reqguests. An overloaded cache server 150 can be
identified by any conventional techniques, e.g., the load monitor can
compute the mean load of all proxy cache servers in past intervals.
oOverloaded cache servers can be those with locads exceeding a threshold
above the mean load. According to the present embodiment, load balancing
takes into account the amount of overloading as well as the load due to
the forwarding frequency 1011 of the cached cbjects. This way, the load
monitor can decide whether or not to continue shifting some or all
forwarded reguests from an overloaded cache server C 10213 to an
underloaded server A 10211. The caching table 1010 includes the
forwarding frequency 1011 and ownership 1012 information of an object or a
partition of objects. As will be discussed below, the ownership can be
single as in 2 10122, or shared 10121, 10123 among two or more cooperating
cache servers. The forwarding frequency 1011 represents the number of
times a request for an object has been [orwarded through the load monitor.
In addition to the forwarding freguency 1011, the caching table 101 can
also maintain a timestamp 1013, indicating the most recent time a request
for an object was forwarded. Further, the caching information for an
object or a partition 1010 can include a forwarding freqguency over a given
time period (count/time) for the object ID or partition ID 1010 through
the load monitor 120. Object partitions 1010 can alternatively be based on
a hash function on object identifiers, or can be based on the directory
atructures that objects are organized by on the web servers. In the case
of a partition, any object belonging to a partition will be forwarded by
the load monitor. The shifting of ownership can be based on the load
condition of the servers, the forwarding frequency 1011 and other
information such as the time stamp information.

Figure 3 shows an example of a logic flow for steps taken by the
load monitor 120 in response to a request 125 from a cache server 150
because of a cache miss. As depicted, in step 201, it checks to see if the
reguested cbject/partition can be found in the caching table. If not, in
step 202, a new entry is created for the object/partition and a cache

10

15

20

25

30

35

40

45

WO 00/22526 PCT/GB99/03360

server is assigned as its owner. After the entry is located in the caching
table, in step 203, the forwarding frequency 1011 is updated, e.g..
incremented by 1. The load monitor then examines the load table 102 to
see if the owner is currently overloaded (and that the forwarding
freguency 1011 is a significant contributor thereto), in step 204. If yes,
in step 205, the load monitor finds an underloaded (or less loaded) cache
server and assign it as the new 10122 (or shared) owner 10122 of the
requested object. The ownership information 1012 for the object in the
caching table 101 is updated accordingly. Those skilled in the art will
appreciate that the logic flow could comprise a shared 10123 or
hierarchical ownership 1012 in the caching table 101 or other data
structure employed. The request (possibly with a copy of the requested
object) can then be forwarded 125 to a new sole 10122 (or shared 10123)
owner, in step 206. Alternatively, the new owner can be reguested to
obtain 115 an object copy from the originating cbject server, e.g., via
the Internet 110. Those skilled in the art will appreciate that the load
checking step 204 can be performed proactively, i.e., periodically or in
response to an identified overload or overload trend 1021 - due at least
in part to a high forwarding frequency 1011 - for a given object
id/partition id 1010 and cache server (ownership 1012). If so, then in
step 205, the load monitor finds an underloaded (or less loaded) cache
server, assigns it as the new (or shared) owner of the requested object,
and possibly sends a copy of the object toc the new (or shared) owner as
above. Conversely, if a shared ownership model is used, in step 208, when
the load condition 10211 and forwarding frequency 10111 for a shared
ownership object (p 10101) drops below a predetermined threshold, in step
209, the shared ownership (B, A 10121) can be merged to a single ownership
and one of the copies purged from one of the cache servers A 10121, e.g..,
to make room for another hot cbject.

Figure 4 shows an example of a logic flow for a cache server when a
request for an object is received, either directly 155 from a browser 160
or forwarded 125 from the load monitor 120. As depicted, in step 301, it
first checks to see if the requested object can be found locally in its
cache. If ves, in step 302, it returns the object and the process ends, in
step 306. Otherwise, in step 303, it checks to see if the request is a
direct request or a forwarded request. If it is a direct request, in step
304, the reguest is sent to the load monitor and the process ends, in step
306. On the other hand, if the reguest is a forwarded request, in step
305, the cache server will fetch the object from the originating web
server and return the object. The process then ends, in step 306.

Referring now to Figures la and 2a-b, assume for example, a browser
160 connecting to a cache server C 10223 requests 155 an object p 10101.
From the caching table 101, it can be seen that object p 10101 is not

10

15

20

25

30

35

40

45

WO 00/22526 PCT/GB99/03360
10

cached on server C, but it is cached on ("owned" by) cache server B
(assuming B, A 10121 is initially only solely designated by B). In
response to a cache miss on object p, server C 10223 sends a réquest to
the load monitor 120 for object p. Depending on the load condition 10212
and forwarding freguency 1011 of reguests for p 10101 on server B, the
load monitor may forward the request to server B, asking it to send a copy
of object p to server C. Or, if server B is currently overloaded or is
trending as such, the load monitor might shift the forwarded request by
finding an underloaded (or less loaded) server to serve as a new (or
shared as in B, A 10121) owner of object p. The request is then forwarded
to the new (or shared e.g., A) owning server for the object. Note that
even after the transfer of ownership, a copy of cbject p is still on
cerver B’s cache and can still serve direct requests coming to server B.
However, in this example, all future forwarded requests for ocbject p (or
perhaps some, in the case of a shared ownership) will be shifted to server
A. Alternatively, in the case of shared ownership B, A 10121, future
forwarded requests for object p 10101 can be sent to the less loaded
server.

Now that a load balancing method according to the present embodiment
has been described for a collection of proxy cache servers where a logical
central directory is used for locating an object, various alternatives
will be considered. The present invention can be adapted to achieve lcad
balancing for these systems as well.

For example, the present invention can be configured to perform load
balancing for a collection of cooperating proxy cache servers where each
cache server 150 multicasts to a list of cooperating cache servers to
locate a copy of a locally missed object. In this case, no specific
ownership information need be maintained anywhere in the system. However,
there is also no guarantee of finding an object from the cooperating cache
servers, either. Assume that a logical load monitor 120 is used to
maintain the load conditions 1021 of all proxy cache servers and share
this information with each cache server 150. The load balancing can be
achieved by excluding overloaded servers from the list of cooperating
servers to which a cache server multicasts its request (also called a
shift reguest). As a result, only less loaded cache servers will receive
forwarded requests 125.

Another alternative is a load balancing method for a collection of
cooperating proxy cache servers where a hash function is used to locate a
copy of a locally missed object. In this case, the object space can be
partitioned among the cooperating DIOXY cache servers 150, with one
partition for each cache server. In order to achieve load balancing by

shifting forwarded reguests, one can change the hash function so that

10

15

20

25

30

35

40

45

WO 00/22526 PCT/GB99/03360
11

forwarded requests will not go to overloaded servers. One preferred
approach is to hash the object space into a large number of buckets, much
larger than the total number of proxy cache servers._ These hash buckets
are then assigned to the cache servers, with the goal of balancing the
loads among them. Periodically, one can move oOne Or more hash buckets from
one overloaded server to an underloaded server, effectively changing the
hash function.

In either case, the load condition of the cooperating cache server
can factor in the forwarding freguency directly into the calculated load
condition. For example, the load condition can be a weighted sum of a
count of said forwarded requests, and a count of direct requests to said
cooperating cache server. Alternatively, the load monitor could separately
maintain the overall forwarding freguency for each cooperating cache

server.

Referring now to Figures 1b and 2a-b, yet another alternative is a
io0ad monitor 120 that is distributed, i.e., wherein some or all the load
monitor is duplicated across the cache servers 150. In one example, the
distributed load monitor includes local lcad condition information 1021
(and as described below, possibly the load conditions of all (A, B, C, ...
1022)) of the cooperating cache servers 150. The distributed load monitor
120* preferably also includes the caching table 101 with the forwarding
frequency 1011 and ownership 1012 information for each object id/partition
id 1010. Alternatively, a hashing function, for example as described
above, could be distributed and stored in the cache servers. Load
condition information 1021 and/or caching information 101: can be
exchanged periodically; when there is a change in status (ownership or
significant change in load condition); or piggybacked with cache
forwarding requests and responses. Load condition 1021 information could
also have a time stamp (not shown) associated with it for tracking or
other purposes.

Here, if a cache server 150 has a cache miss, the local lcad monitor
120’ looks up the ownership of the requested object in its local caching
table 101 and forwards the reguest, to the owning cache server.
Alternatively, the hash function could be applied to a key from the
request, such as the URL or the degstination IP address, to identify the
partition and the request then forwarded to the correct cache server. When
the forwarded reguest (i.e., from a cache server who had a cache miss) is
received, the owning cache server identifies it as a forwarded reqguest
{e.g., by identifying it as from another cache server as opposed to a
client) and updates its forwarding frequency 1011 information as
applicable (Fig. 3, step 203). If an overload trend or condition is
indicated (step 204), the owning cache server can respond to the

10

15

20

25

30

35

40

45

WO 00/22526 PCT/GB99/03360
12

requesting cache server with a shift request and a copy of the cached
object. Alternatively, the requesting cache server can obtain a copy from
the originating object server via an intranet, WAN ogvlnterngt 110. In
either case, when the forwarding server caches a copy of the object, this
server will no longer issue forward reguests (steps 301, 302) as long as
it remains in the cache, thus proportionally reducing the load on the
owning server. In addition, the owning cache server can multicast a shift
request message to one or more of the other cooperating cache servers 150
so that subsequent forward requests will be shifted, e.g., by updating
their local copy of the caching table or modifving the hash function (step
205) . At this point, other cache servers can forward their requests to the
new owner (or to the least loaded owner of two Or more cache servers 150
if ownership is shared) as indicated in their local copy of the caching
table 101. When the original cache owner’'s load has decreased to an
acceptable level (step 204), e.g., as indicated by a threshold, the shared
ownership information can be merged to its original state (e.g., B,A 10121
--> B).

In the case that the load condition information 1021 for all cache
servers (A,B,C ... 1022) is fully distributed, the reguesting cache
server could proactively check the locad condition (and associated time
stamp) of the owning server (step 204), i.e., before forwarding the
request. If overloaded, the requesting server could request a copy of the
object from the owning server (or from the originating server via the
intranet or Internet 110) and possibly a load condition confirmation. The
owning cache server could update 1its caching table 101 or modify the hash
function to indicate the new shared ownership (step 205). The reguesting
server (or the owning server) could then multicast a message to all other
cache servers 150 indicating the new shared ownership of the object and
possibly include an updated 1oad condition. At this point, other cache
servers would update their caching tables 101 or modify the hash function
to indicate the new shared ownership (step 202), and can forward their
requests (step 206) to the least loaded owner of two or more cache servers
150 sharing ownership as indicated in their local copy of the caching
table 101. When a shared cache owner’s load has decreased to an acceptable
level (steps 204 and 208), e.g., as indicated by a threshold, the
ownership information can be merged to its original state, in step 203.

A preferred embodiment of the present invention includes features
that can be implemented as software tangibly embodied on a computer
program product or program storage device for execution on a processor
(not shown) provided with cache server 150 or other computer embodying the
load monitor 120, such as in the centralized model described. For example,
software implemented in a popular object-oriented computer executable code
such as JAVA provides portability across different platforms. Those

10

15

20

25

30

35

WO 00/22526 PCT/GB99/03360
13

skilled in the art will appreciate that many other compiled or
interpreted, procedure-oriented and/or object-oriented (00) programming
environments, including but not limited to REXX, C, §f+ and_Smalltalk can
also be employed.

Those skilled in the art will also appreciate that methods of the
present embodiment may be the software may be embodied on a magnetic,
electrical, optical, or other persistent program and/or data storage
device, including but not limited to: magnetic disks, Direct Access
Storage Devices (DASD), bubble memory; tape; optical disk formats such as
CD-ROMs and DVD; and other persistent (also called nonvolatile) storage
devices such as core, ROM, PROM, flash memory, Or battery backed RAM.
Those skilled in the art will appreciate that within the spirit and scope
of the present invention, one or more of the components instantiated in
the memory of the server 120’ could be accessed and maintained directly
via disk (not shown), the network, another server, or could be distributed
across a plurality of servers.

In summary, in a system including a collection of cooperating cache
servers, such as proxy cache servers, a request can be forwarded to a
cooperating cache server if the requested object cannot be found locally.
An overload condition is detected if for example, due to reference skew,
some objects are in high demand by all the clients and the cache servers
that contain those hot objects become overloaded due to forwarded
requests. In response, the load igs balanced by shifting some or all of the
forwarded reguests from an overloaded cache server to a less loaded one.
Both centralized and distributed load balancing environments are
described.

while we have described our preferred embodiments of our invention
with alternatives, it will be understood that those skilled in the art,
both now and in the future, may make various improvements and enhancements
which fall within the scope of the claims which follow. These claims
should be construed to maintain the proper protection for the invention

first disclosed.

10

15

20

25

30

35

40

WO 00/22526 PCT/GB99/03360
14

CLAIMS
1. A cache server load balancing method, comprising the steps of:

receiving forwarded reguests from a cooperating cache server in
response to a cache miss for an cbject on the cooperating cache server;
and

shifting one or more of said forwarded requests for the object
between cooperating cache servers based on a locad conditicn and a
forwarding frequency for the object.

2. The method of claim 1, said shifting step further comprising the
steps of:

periodically monitoring the load condition on and the forwarding
frequency to an owning cache server; and

proactively shifting one or more subsequent forwarded reguests for
the cached object from the owning cache server to one Or more of said

cooperating cache servers, in response to said monitoring.

3. The method of claim 1 or 2, said shifting step further comprising
the step of checking the load condition and forwarding frequency, in
response to the forwarded request.

4. The method of claim 1, 2 or 3, wherein said shifting comprises the
step of modifying an ownership for the object to a shared ownership

between two or more of said cooperating cache servers.

5. The method of claim 4, further comprising the step of merging said
shared ownership in response to change in the load condition.

6. The method of any of claims 1 to 5, further comprising the step of
locally monitoring the load on each cooperating cache server.

7. The method of claim 6, further comprising the step of:
a distributed load monitor monitoring and maintaining a local load
condition, the forwarding frequency and ovnership information for cached

objects on said each cooperating cache server.

8. The method of claim 7, further comprising the steps of:

10

15

20

25

30

35

40

WO 00/22526 PCT/GB99/03360
15

said cooperating cache servers periodically exchanging and
maintaining one or more of: the load condition information; the forwarding
frequency; and the ownership information.

—

9. The method of claim 7, further comprising the steps of:

said cooperating cache servers exchanging by piggybacking one or
more of: the load condition information; the forwarding frequency; and the
ownership information; with one or more of the forwarded reguests and

responses.

10. The method of any of claims 1 to 9, further comprising the step of:
receiving a forwarded request and updating the forwarding frequency.

11. The method of claim 7, 8, 9 or 10, further comprising the steps of:
identifving a less loaded cooperating cache server; and

communicating one or more of: a shift request; and a copy of the
cached object, to said less loaded cooperating cache server.

12. The method of claim 11, further comprising the steps of:

said less loaded cooperating cache server receiving said shift
request; and

said less loaded cooperating cache server requesting a copy of the
object from an originating object server, in response to said shift
request. '

13. The method of claim 11, wherein the copy is obtained via one or more

of an intranet, WAN or Internet.

14. The method of any of claims 1 to 13, further comprising the step of
multicasting a shift request message to one Or more of the other
cooperating cache servers so that subsequent forward requests will be
shifted.

15. The method of claim 14, further comprising the step of:

the cooperating cache servers maintaining one of a local copy of a
caching table and modifying a hash function; and

10

15

20

25

30

35

40

WO 00/22526 PCT/GB99/03360
16

the cooperating cache servers modifying the ownership information by
one of: updating a local copy of a caching table; and modifying a hash
function.

-

16. The method of claim 15, further comprising the steps of:

modifying the ownership for the cbject to a shared ownership between
at least two of said cooperating cache servers; and

said cooperating cache servers forwarding subsequent object regquests
to one or more less loaded shared owners of the object.

17. The method of claim 16, further comprising the steps of:
detecting a decrease in the load condition for a shared object; and

merging the shared ownership, in response to the decrease in the
locad condition.

18. The method of any of claims 1 to 17, wherein said shifting one or
more of said forwarded requests comprises the steps of:

communicating a copy of the object from an owning cache server to
one or more of said cooperating cache servers; and

said cooperating cache server receiving and caching the copy of the
object.

19. The method of any of claims 1 to 18, further comprising the steps
of:

calculating the load condition of each cache server in past
intervals;

computing a mean load of all cache servers in past intervals; and

finding the cache servers that exceed a threshold above said mean
load.

20. The method of any of claims 1 to 19, wherein the load condition of
said cooperating cache server can be a weighted sum of a count of said
forwarded requests, and a count of direct requests to said cooperating
cache server.

10

15

20

25

30

35

40

45

WO 00/22526 PCT/GB99/03360
17

21. The method of any of claims 1 to 20, further comprising the step of
maintaining cache information at one or more of: each object level; and a
partition of objects level. ' -

22, The method of claim 21, wherein said cache information of said
object level or said partition comprises the forwarding frequency
associated with the object.

23. The method of claim 22, further comprising the step of:

a distributed load monitor monitoring and locally maintaining load
conditiong, forwarding frequency and ownership information for cached
objects on each cache server.

24 . The method of claim 23, further comprising the steps of:

said cooperating cache servers periodically exchanging one or more
of the load condition, the forwarding frequency and the ownership
information.

25. The method of claim 22,23 or 24 further comprising the steps of:

said cooperating cache servers exchanging by piggybacking one or
more of: the load condition:; the forwarding frequency; and the ownership
information; with one or more of the forwarded requests and responses.

26. A method of load balancing in a collection of cooperating cache
servers, where each cache server can receive direct requests and forwarded
requests, and upon a cache miss, a reguest can be forwarded to an owning
cache server caching said object, the method comprising the steps of:

monitoring a load condition and a forwarding frequency for said
cooperating cache servers; and

shifting one or more forwarded requests from one cooperating cache
gserver to a second cooperating cache server based on a change in the load
condition and the forwarding freguency.

27. The method of claim 26, wherein said step of monitoring the load
condition comprises the steps of:

calculating the load condition of each cache server in past
intervals;

computing a mean load of all proxy cache servers in past intervals; and

10

15

20

25

30

35

40

45

WO 00/22526 PCT/GB99/03360
18

finding those proxy cache servers that exceed a threshold above said
mean load.
bl - .
28. The method of claim 26 or 27, wherein said shifting step can be
performed in response tc one Or more of: said forwarded reguests from said
cooperating cache servers; and periodically monitoring the load condition
and the forwarding frequency.

29. The method of claim 26 or 27, further comprising the step of a
centralized logical load monitor maintaining the forwarding frequency and
the load condition for the cooperating cache servers.

30. The method of claim 26, 27, 28 or 29 wherein the load condition of
said cache server can be a weighted sum of: a count of forwarded requests;
and a count of direct requests to said cache server.

31. The method of claim 26, 27, 28 or 29 further comprising the step of
maintaining cache information at each object level or at a partition of
objects level.

32. The method of claim 31, wherein said cache information of the cbject
level or the partition level comprises the forwarding frequency of
requests through said load monitor to said object.

33. The method of any of claims 26 to 32, wherein said cooperating cache
servers comprise cooperating proxy cache servers.

34. The method of any of claims 26 to 32, further comprising the steps
of :

a logical directory server maintaining a caching table and a load
table;

said cache servers interrogating said directory server for object
locations in other cache servers for a locally missed object; and

said directory server load balancing requests among said cache
servers by manipulating said caching table, in response to requests for
object locations.

35. The method of claim 29, further comprising the steps of:

each cache server multicasting to a list of cooperating cache
servers to locate a copy of a locally missed object: and

10

15

WO 00/22526 PCT/GB99/03360
19

said shifting step comprising the step of excluding overloaded cache
servers from a subset of neighboring cache servers for multicasting.
. . :
36. A program storage device readable by a machine, tangibly embodying a
program of instructions executable by the machine to perform method steps
for cache server load balancing, said method steps comprising:

receiving forwarded requests from a cooperating cache server in
response to a cache miss for an object on the cooperating cache server:
and

shifting one or more of said forwarded requests for the object
between cocperating cache servers based on a load conditicn and a
forwarding frequency for the cobject.

PCT/GB99/03360

WO 00/22526

115

| 9l
_ e

g)e o o(18SMOIG

09}
A G

el b4

GGl
J19AIBS EINER e
ogif| BUIED g] OUOED 05+
S
I / {osm: eale
_ / [euoiBal/NYT
\ | .\\%’\l
\ T W
\ w M 9160
w\/ mﬁyv/ ~_ | Buiouejeq
S \~=—__3 | PEOI

o o o(185M0IG

091
GGl

09}
Sal

J9NIBS
5089

!

0 \

0hl

JOUBIUI/NVM

JonIss
o] 8U%ES
, "
\
| /
/
/ /
/
/
s /

Gl

PCT/GB99/03360

WO 00/22526

215

0¢h

%. o « (J3smoig

(Usey Jo s|qey)
oJul 8yoed
pa|qel peo’
-Jojjuow peoT

J9AJBS BY3eD

05—

Ghl

(ysey Jo aqey)
01Ul 8YoBD
Boiqel peo
:10}lUOW pEO7

19A18S 8UJB)

2

0

4

. yiomjau eale [euolBa/NY T

|

(ysey Jo a|qey
OJUl BUORD
gajqe] peo’
110)IUOW peoT]

)

J8AlBS 9oe)d

0bl

m:\\%d

(ysey Jo sjqey)
OJul 8yoeo
gelgqe] peoT
-Jojuow pect

19AIBS 8y2e)

0gL -~

Gh

JOUIBIUI/NYM

PCT/GB99/03360

WO 00/22526

3/5

qz "bi4

e120b] 080 0 T[l¢weol |
¢hell—_| Gy'0 g [—zzzoL >z20)
20— | GL'0 v e 1ze0)

ESM

UONIPUOD PEoT

JOAIBS BYJED

9{qel peoT
¢0l
eg "b14
AL S A0 050} wwiyy 1 T[—coto
120l v'g 7'z ww:yy d T2 000
(8)eJ JO JUNOD) A
duysieumg | Aousnbay | dueys swn) | P coz_wma L —0l01
\\\ Buipiemio [P1199140
20l I o|qel Bulyoey 9 1
7 < j/
LLOL €10l

PCT/GB99/03360

WO 00/22526

415

A

¢ "bid pu3

13UMmo 8y}
0} 1senbau 8y} piemio

>

@ONM

uonewsojul diysJaumo sy
ajepdn pue ‘uopnedposiqo ey

ablow 9 44 3o9yD
S

60¢ SOA

JJaumQ paleys

L POPBOIAAD

A

10 Jaumo (paJeys Jo) mau sy)
Se 9oed Papeo] sso| e pulq

momy\

SA

Ajjuaing
1aUMO 8y} S|

Jaumo (paseys
10 MaU) S} Se JaAIaS 8yoed
e ubisse pue uoniied;os(qo

S| sy o) Anyus ue sjeal)

¢0¢

70¢
(44) Aouanbalj
1 Buipiemio} sy ayepdn
mom\« SaA

¢,9|qey Buiyoeo
ay} Ui uopypedposlqo
pajsenbal sy} |

10C

PCT/GB99/03360

WO 00/22526

515

)

pug <

‘

90¢

A

J0}lUOW pEO| By}
0} Jsenbal ay} puag

v0¢ >

A

100[qo sy} winjay

NomM

SOA

uinjal pue Jsuisiu| ey
elA Janses gam Bupeulblo
U} woy Jo8(qo auy yoia4

Jo8[qo ay}

G0¢

€0¢

10€

S

c1senbal joalip e
Siy} S|

;,840e0
1800] Y} Ui 108[q0
pajsenbal
oy} s

INTERNATIONAL SEARCH REPORT Im donal Application No

PCT/GB 99/03360

A. CLASSIFICATION SUBJECT MATTER

(o]
1PC 7 CGOBFO/26 GO6F17/30

According to international Patent Classification (IPC) or to both national classification and 1PC

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the internationai search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication. where appropriate, of the reievant passages Relevant to claim No.

published documents”

XP002075421

INTERNATIONAL CONFERENCE ON DISTRIBUTED
COMPUTING SYSTEMS,XX,XX,1997, page 160-168

page 161, left-hand column, Tine 1 —-page
165, left-hand column, line 27

A HEDDAYA A ET AL: "WebWave: globally load 1-36
balanced fully distributed caching of hot

.

Further documents are listed in the continuation of box C.

D Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disciosure, use, exhibition or
other means

“P" document published prior to the intemational filing date but
later than the priority date claimed

"T" fater document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theecry undertying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the documentis taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
meﬂr:ts. such combination being obvious to a person skilled
inthe art.

"&" document member of the same patent family

Date of the actual completion of the international search

25 January 2000

Date of mailing of the international search report

08/02/2000

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tal. (+31-70) 340-2040, Tx. 31 651 epo ni,
Fax: (+31-70) 340-3016

Authorized officer

Michel, T

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

inte onal Application No

PCT/GB 99/03360

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category

Citation of document, with indication.wriera appropnate. of the relevant passages

Relevant (o ctaim No.

YU P S ET AL: "Performance study of a
collaborative method for hierarchical
caching in proxy servers"
COMPUTER NETWORKS AND ISDN
SYSTEMS ,NL ,NORTH HOLLAND PUBLISHING.
AMSTERDAM,
vol. 30, no. 1-7,

14 April 1998 (1998-04-14), page 215-224
XP004121425

ISSN: 0169-7552
page 216, right-hand column, paragraph 3
-page 218, left-hand column
LAW K L E ET AL: "A scalable and
distributed WWW proxy system”
PROCEEDINGS IEEE INTERNATIONAL CONFERENCE
ON MULTIMEDIA COMPUTING AND SYSTEMS ’97
(CAT. NO.97TB100141), PROCEEDINGS OF IEEE
INTERNATIONAL CONFERENCE ON MULTIMEDIA
COMPUTING AND SYSTEMS, OTTAWA, ONT.,
CANADA, 3-6 JUNE 1997,1997, pages 565-571,
XP002128668

1997, Los Alamitos, CA, USA, IEEE Comput.
Soc, USA ISBN: 0-8186-7819-4
page 566, paragraph 2

MOURAD A ET AL: "SCALABLE WEB SERVER
ARCHITECTURES"

PROCEEDINGS IEEE SYMPOSIUM ON COMPUTERS
AND COMMUNICATIONS,1997, XP000199852
page 15, left-hand column, paragraph 4.1

1,26,36

1,5,21,
23,26,
33,36

1,2,26,
36

Form PCT/ISA/210 (continuation of second sheat) (July 1992)

page 2 of 2

	2008-08-26 Foreign Reference

